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Abstract A simple model for describing the non-quasi-equivalent icosahedral virus
capsid composed of 72 pentameric capsomeres is developed. By means of six-step
operations, a new 4-gons polyhedron P is obtained which contains 72 pentagons, 80
trigons and 210 quadrilaterals. More importantly, it bears icosahedral symmetry. The
rationality of the existence of the 4-gons polyhedron P is further discussed. The results
show that this model can be used to represent the capsids of papovaviruses.

Keywords Non-quasi-equivalent icosahedra · Virus capsid · Pentameric capsomere ·
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1 Introduction

A virus capsid has been considered as a protein shell made up of many protein subunits
which protects a virus from being infected. The study of its structure is an important
subject of virology. In 1956, Crick and Watson were the first to suggest that the major-
ity of virus capsids are composed of numerous identical protein subunits arranged in
either helical or icosahedral symmetry [1]. Some years later, Casper and Klug pro-
posed the notable quasi-equivalence theory to account for the arrangement of proteins
on the surface of an icosahedral virus capsid [2]. In their theory, the icosahedral virus
capsid is considered as a closed spherical shell that is constructed by combining 60T
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subunits or 12 pentamers and 10(T − 1) hexamers (T is the triangulation number
and it can be 1, 3, 4, 7,…) [2]. Most viruses that have been investigated experimen-
tally abide by these rules, and these rules have been considered as the fundamental
framework for understanding the capsids of icosahedral viruses. However, the capsids
of papovaviruses [3–6] which are composed of 72 pentameric capsomeres arranged
on a T = 7 icosahedral lattice cannot be explained by the quasi-equivalent theory
[7], and a tilting approach was proposed by Twarock to solve the problem mentioned
above[8]. This approach provides an excellent interpretation of non-quasi-equivalent
subunit arrangements in icosahedral virus capsids that have been observed experimen-
tally but are not covered by the Caspar–Klug approach. This is especially valuable
for the structures of polyoma virus, simian virus 40 and papillomaviruses, and so
on [3–6].

In the past few years, a large number of theoretical attempts to understand virus
capsids appeared, using necessary and simple geometric assumptions, such as discs on
a sphere [9,10], simple van der Waals spheres [11], Stock-mayer fluids [12], trapezoi-
dal subunits [13,14], tiles [15] and simple bonding units [7,16,17]. It is noteworthy that
Goldberg polyhedra are also good models in the description of icosahedral viral caps-
ids which abide by the quasi-equivalence theory [18]. Nevertheless, Qiu et al. [19,20]
recently pointed out that some spherical viral capsids such as herpesvirus capsid [21]
and Semliki Forest virus capsid [22] cannot be covered by Goldberg polyhedra. And
they have put forward a very useful approach, namely extended Goldberg polyhedra,
to model the capsids of these viruses, which has enriched the knowledge of models in
realizing virus capsids. Inspired by this idea, we propose another model to character-
ize the capsids of papovaviruses [3–6] that do not conform to the quasi-equivalence
theory in the present work. We hope this method will provide a new insight into the
modeling of the non-quasi-equivalence icosahedra virus capsids.

2 Polyhedron model

Geometrically, the non-quasi-equivalent icosahedral virus capsid can be regarded as a
geometrical entity formed by 72 identical pentagons, and it has icosahedral sym-
metry. Therefore, we aim at constructing a polyhedron containing 72 pentagons
to depict the capsids of papovaviruses. The construction processes are elucidated
as follows.

For a regular pentagon (Fig. 1a), it can be divided into six pentagons (Fig. 1b), and
the middle is a regular pentagon, while the others around it are irregular. Then after the
transmutation operation, Fig. 1b can be converted into Fig. 1c, in which it possesses
six regular pentagons.

In order to obtain 72 pentagons, every regular pentagon in the regular dodecahedron
(Fig. 2a) has undergone the two-step operation shown in Fig. 1. The resultant structure
containing 72 pentagons (Fig. 2b) is now projected onto its circumscribing sphere S1
(Fig. 2c). Next, the surface of the sphere S1 is expanded while keeping the position
and size of the polygons unchanged. On the other hand, the cambers of the spherical
polygons are allowed to change so as to adapt to the variation of curvature of sphere.
Consequently, the stretching-extending sphere S2 (Fig. 2d) enlarges the gaps among
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Fig. 1 The division (a→b) and transmutation (b→c) processes of a regular pentagon

Fig. 2 The construction of polyhedron model for the capsids of papovaviruses. a The regular dodecahe-
dron; b the structure with 72 pentagons; c the circumscribing sphere S1; d the stretching-extending sphere
S2; e the sphere S3; f the 4-gons polyhedron P

the arcs as well as those among the vertices of the sphere S1. The stretching-extend-
ing operation is stopped when the gaps among the arcs and those among the vertices
are extended to the lengths of the arcs. This sphere is denoted as S3, as can be seen
from Fig. 2e. It can be observed that the spherical quadrilaterals are derived from the
gaps among its arcs, while the spherical trigons are obtained from the gaps among its
vertices. Finally, the extended sphere S3 is projected back onto its inscribed polyhe-
dron, thereby forming a new 4-gons polyhedron P (Fig. 2f), which has icosahedral
symmetry. It contains 72 pentagons, 80 trigons and 210 quadrilaterals (Fig. 3). The
conversion from the regular dodecahedron to the 4-gons polyhedron P illustrates that
the regular dodecahedron has the feature with scale invariability.

3 Rational 4-gons polyhedron P

The Euler’s law [23] and the total angular defect [24] by which convex polyhedra must
abide have been used here to examine the rationality of the 4-gons polyhedron P.

With respect to the 4-gons polyhedron P, the number of its vertices V, the number
of its faces F and the number of its edges E are calculated as follows.
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Fig. 3 Schematic representation of the ichnography of the 4-gons polyhedron P (Fig. 2f)

V = (72 ∗ 5 + 80 ∗ 3 + 210 ∗ 4) /4 = 360

F = 72 + 80 + 210 = 362

E = (72 ∗ 5 + 80 ∗ 3 + 210 ∗ 4) /2 = 720

It is evident that V + F = E + 2, and the 4-gons polyhedron P strictly conforms to
the Euler’s law.

For any convex polyhedron, the total angular defect over all its vertices is
720◦. Herein, we have obtained two types of convex polyhedra (types I and II),
in which their differences are caused by the constituent polygons with different
angles.

With regard to the type I, the total angular defect distributed on each vertex is
2◦, so its icosahedral symmetry is preserved. The filled trigons and quadrilaterals in
Fig. 3 are analyzed. The equilateral triangles are filled at the positions of 20 three-
fold axes (Fig. 4a), and the rectangles are filled at the positions of 30 twofold axes
(Fig. 4b). At the position of fivefold axis, the combined building block composed of
6 regular pentagons, 5 isoceles triangles, 5 echelons and 5 squares is filled, and it
possesses fivefold symmetry, as depicted in Fig. 4c. It can be seen that the angles of
the isoceles triangle in Fig. 4c are 70◦, 55◦ and 55◦, respectively, while the angles
of the echelon are 75◦, 75◦, 105◦ and 105◦, respectively. In addition, an echelon
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Fig. 4 The components of the ichnography of the 4-gons polyhedron P (Type I). a The equilateral triangle;
b the rectangle; c the combined building block and its components except the regular pentagons (an isoceles
triangle with the angles of 70◦, 55◦ and 55◦, an echelon with the angles of 75◦, 75◦, 105◦ and 105◦, and a
square); d the echelon with the angles of 85◦, 85◦, 95◦ and 95◦

with the angles of 85◦, 85◦, 95◦ and 95◦ (Fig. 4d) is added on each shorter side of
a rectangle.

For the type II, similar to Goldberg polyhedra, the total angular defect is distributed
to the 60 vertices of 12 pentagons which located at the position of fivefold axis, so
it is 12◦ for each vertex. The total angular defect of the other vertices (except the
60 vertices) is 0◦, which means that the sum of all the angles at the other vertices is
360◦. Similarly, its icosahedral symmetry is kept. The equilateral triangles filled at the
positions of 20 threefold axes (Fig. 5a) and the rectangles filled at the positions of 30
twofold axes (Fig. 5b) are as same as those of type I. But the combined building block
having fivefold symmetry at the position of fivefold axis is different from that of type
I. It includes 6 regular pentagons, 5 equilateral triangles, 5 echelons and 5 squares, as
displayed in Fig. 5c. Furthermore, the angles of the echelon are 78◦, 78◦, 102◦ and
102◦, respectively. Additionally, on each shorter side of a rectangle, an echelon with
the angles of 84◦, 84◦, 96◦ and 96◦ (Fig. 5d) is added.

4 Conclusions

In summary, a theoretical model to represent the capsids of papovaviruses containing
72 pentameric capsomeres has been proposed. A new 4-gons polyhedron P is obtained
via six-step operations (division, transmutation, projection, stretching-extending, gap
filling and back projection), and it contains 72 pentagons, 80 trigons and 210 quad-
rilaterals. The pentagons, trigons and quadrilaterals are used to model the pentamers
of virus capsids as well as the interactions of the pentamers at the positions of both
threefold and twofold axes. The rationality of the existence of the 4-gons polyhedron
P has been confirmed by the Euler’s law. Moreover, two types of convex polyhedra
composed of polygons with different angles have been obtained by analyzing the total
angular defect. This approach overcomes the limitations of the number of pentagons,
thereby providing new ideas in modeling the virus capsids. At the same time, the other
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Fig. 5 The components of the ichnography of the 4-gons polyhedron P (Type II). a The equilateral tri-
angle; b the rectangle; c the combined building block and its components except the regular pentagons (an
equilateral triangle, an echelon with the angles of 78◦, 78◦, 102◦ and 102◦, and a square); d the echelon
with the angles of 84◦, 84◦, 96◦ and 96◦

methods like “polyhedral links model” have also been developed [25,26], as reviewed
by Jablan and coworkers [27], and we are attempting to apply them to the constructions
of other virus capsids, which are underway.
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